Log In Sign Up

FA-GAN: Fused Attentive Generative Adversarial Networks for MRI Image Super-Resolution

by   Mingfeng Jiang, et al.

High-resolution magnetic resonance images can provide fine-grained anatomical information, but acquiring such data requires a long scanning time. In this paper, a framework called the Fused Attentive Generative Adversarial Networks(FA-GAN) is proposed to generate the super-resolution MR image from low-resolution magnetic resonance images, which can reduce the scanning time effectively but with high resolution MR images. In the framework of the FA-GAN, the local fusion feature block, consisting of different three-pass networks by using different convolution kernels, is proposed to extract image features at different scales. And the global feature fusion module, including the channel attention module, the self-attention module, and the fusion operation, is designed to enhance the important features of the MR image. Moreover, the spectral normalization process is introduced to make the discriminator network stable. 40 sets of 3D magnetic resonance images (each set of images contains 256 slices) are used to train the network, and 10 sets of images are used to test the proposed method. The experimental results show that the PSNR and SSIM values of the super-resolution magnetic resonance image generated by the proposed FA-GAN method are higher than the state-of-the-art reconstruction methods.


page 14

page 15

page 16


Fine Perceptive GANs for Brain MR Image Super-Resolution in Wavelet Domain

Magnetic resonance imaging plays an important role in computer-aided dia...

Dual-cycle Constrained Bijective VAE-GAN For Tagged-to-Cine Magnetic Resonance Image Synthesis

Tagged magnetic resonance imaging (MRI) is a widely used imaging techniq...

Single MR Image Super-Resolution via Channel Splitting and Serial Fusion Network

Spatial resolution is a critical imaging parameter in magnetic resonance...

Progressive Generative Adversarial Networks for Medical Image Super resolution

Anatomical landmark segmentation and pathology localization are importan...

Flow-based Visual Quality Enhancer for Super-resolution Magnetic Resonance Spectroscopic Imaging

Magnetic Resonance Spectroscopic Imaging (MRSI) is an essential tool for...

Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

Super-resolving the Magnetic Resonance (MR) image of a target contrast u...

Recursive 3D Segmentation of Shoulder Joint with Coarse-scanned MR Image

For diagnosis of shoulder illness, it is essential to look at the morpho...