Extraction of Templates from Phrases Using Sequence Binary Decision Diagrams

01/28/2020 ∙ by Daiki Hirano, et al. ∙ 0

The extraction of templates such as “regard X as Y” from a set of related phrases requires the identification of their internal structures. This paper presents an unsupervised approach for extracting templates on-the-fly from only tagged text by using a novel relaxed variant of the Sequence Binary Decision Diagram (SeqBDD). A SeqBDD can compress a set of sequences into a graphical structure equivalent to a minimal DFA, but more compact and better suited to the task of template extraction. The main contribution of this paper is a relaxed form of the SeqBDD construction algorithm that enables it to form general representations from a small amount of data. The process of compression of shared structures in the text during Relaxed SeqBDD construction, naturally induces the templates we wish to extract. Experiments show that the method is capable of high-quality extraction on tasks based on verb+preposition templates from corpora and phrasal templates from short messages from social media.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.