Extent of occurrence reconstruction using a new data-driven support estimator

07/19/2019
by   A. Rodríguez-Casal, et al.
0

Given a random sample of points from some unknown distribution, we propose a new data-driven method for estimating its probability support S. Under the mild assumption that S is r-convex, the smallest r-convex set which contains the sample points is the natural estimator. The main problem for using this estimator in practice is that r is an unknown geometric characteristic of the set S. A stochastic algorithm is proposed for determining an optimal estimate of r from the data under mild regularity assumptions on the density function. The resulting data-driven reconstruction of S attains the same convergence rates as the convex hull for estimating convex sets, but under a much more flexible smoothness shape condition. The new support estimator will be used for reconstructing the extent of occurrence of an assemblage of invasive plant species in the Azores archipelago.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro