DeepAI AI Chat
Log In Sign Up

Extending the Patra-Sen Approach to Estimating the Background Component in a Two-Component Mixture Model

by   Ery Arias-Castro, et al.

Patra and Sen (2016) consider a two-component mixture model, where one component plays the role of background while the other plays the role of signal, and propose to estimate the background component by simply "maximizing" its weight. While in their work the background component is a completely known distribution, we extend their approach here to three emblematic settings: when the background distribution is symmetric; when it is monotonic; and when it is log-concave. In each setting, we derive estimators for the background component, establish consistency, and provide a confidence band. While the estimation of a background component is straightforward when it is taken to be symmetric or monotonic, when it is log-concave its estimation requires the computation of a largest concave minorant, which we implement using sequential quadratic programming. Compared to existing methods, our method has the advantage of requiring much less prior knowledge on the background component, and is thus less prone to model misspecification. We illustrate this methodology on a number of synthetic and real datasets.


page 13

page 30


Maximum Likelihood Estimation of a Semiparametric Two-component Mixture Model using Log-concave Approximation

Motivated by studies in biological sciences to detect differentially exp...

Estimating the Ratio of Means in a Zero-inflated Poisson Mixture Model

The problem of estimating the ratio of the means of a two-component Pois...

Bi-s^*-Concave Distributions

We introduce a new shape-constrained class of distribution functions on ...

On shrinkage estimation of a spherically symmetric distribution for balanced loss functions

We consider the problem of estimating the mean vector θ of a d-dimension...

Topological mixture estimation

Density functions that represent sample data are often multimodal, i.e. ...

Analysis of LGM Model for sEMG Signals related to Weight Training

Statistical models of Surface electromyography (sEMG) signals have sever...