Expressing Sparse Matrix Computations for Productive Performance on Spatial Architectures
This paper addresses spatial programming of sparse matrix computations for productive performance. The challenge is how to express an irregular computation and its optimizations in a regular way. A sparse matrix has (non-zero) values and a structure. In this paper, we propose to classify the implementations of a computation on a sparse matrix into two categories: (1) structure-driven, or top-down, approach, which traverses the structure with given row and column indices and locates the corresponding values, and (2) values-driven, or bottom-up, approach, which loads and processes the values in parallel streams, and decodes the structure for the values' corresponding row and column indices. On a spatial architecture like FPGAs, the values-driven approach is the norm. We show how to express a sparse matrix computation and its optimizations for a values-driven implementation. A compiler automatically synthesizes a code to decode the structure. In this way, programmers focus on optimizing the processing of the values, using familiar optimizations for dense matrices, while leaving the complex, irregular structure traversal to an automatic compiler. We also attempt to regularize the optimizations of the reduction for a dynamic number of values, which is common in a sparse matrix computation.
READ FULL TEXT