Exponential ergodicity of mirror-Langevin diffusions

05/19/2020
by   Sinho Chewi, et al.
0

Motivated by the problem of sampling from ill-conditioned log-concave distributions, we give a clean non-asymptotic convergence analysis of mirror-Langevin diffusions as introduced in Zhang et al. (2020). As a special case of this framework, we propose a class of diffusions called Newton-Langevin diffusions and prove that they converge to stationarity exponentially fast with a rate which not only is dimension-free, but also has no dependence on the target distribution. We give an application of this result to the problem of sampling from the uniform distribution on a convex body using a strategy inspired by interior-point methods. Our general approach follows the recent trend of linking sampling and optimization, and in particular, it yields new results on the convergence of the vanilla Langevin diffusion in Wasserstein distance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset