Exponential convergence of testing error for stochastic gradient methods

12/13/2017
by   Loucas Pillaud-Vivien, et al.
0

We consider binary classification problems with positive definite kernels and square loss, and study the convergence rates of stochastic gradient methods. We show that while the excess testing loss (squared loss) converges slowly to zero as the number of observations (and thus iterations) goes to infinity, the testing error (classification error) converges exponentially fast if low-noise conditions are assumed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset