Exploring the Zero-Shot Capabilities of the Segment Anything Model (SAM) in 2D Medical Imaging: A Comprehensive Evaluation and Practical Guideline

04/28/2023
by   Christian Mattjie, et al.
0

Segmentation in medical imaging plays a crucial role in diagnosing, monitoring, and treating various diseases and conditions. The current landscape of segmentation in the medical domain is dominated by numerous specialized deep learning models fine-tuned for each segmentation task and image modality. Recently, the Segment Anything Model (SAM), a new segmentation model, was introduced. SAM utilizes the ViT neural architecture and leverages a vast training dataset to segment almost any object. However, its generalizability to the medical domain remains unexplored. In this study, we assess the zero-shot capabilities of SAM 2D in medical imaging using eight different prompt strategies across six datasets from four imaging modalities: X-ray, ultrasound, dermatoscopy, and colonoscopy. Our results demonstrate that SAM's zero-shot performance is comparable and, in certain cases, superior to the current state-of-the-art. Based on our findings, we propose a practical guideline that requires minimal interaction and yields robust results in all evaluated contexts.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset