Exploring the Use of an Unsupervised Autoregressive Model as a Shared Encoder for Text-Dependent Speaker Verification

08/08/2020 ∙ by Vijay Ravi, et al. ∙ 0

In this paper, we propose a novel way of addressing text-dependent automatic speaker verification (TD-ASV) by using a shared-encoder with task-specific decoders. An autoregressive predictive coding (APC) encoder is pre-trained in an unsupervised manner using both out-of-domain (LibriSpeech, VoxCeleb) and in-domain (DeepMine) unlabeled datasets to learn generic, high-level feature representation that encapsulates speaker and phonetic content. Two task-specific decoders were trained using labeled datasets to classify speakers (SID) and phrases (PID). Speaker embeddings extracted from the SID decoder were scored using a PLDA. SID and PID systems were fused at the score level. There is a 51.9 supervised x-vector baseline on the cross-lingual DeepMine dataset. However, the i-vector/HMM method outperformed the proposed APC encoder-decoder system. A fusion of the x-vector/PLDA baseline and the SID/PLDA scores prior to PID fusion further improved performance by 15 proposed approach to the x-vector system. We show that the proposed approach can leverage from large, unlabeled, data-rich domains, and learn speech patterns independent of downstream tasks. Such a system can provide competitive performance in domain-mismatched scenarios where test data is from data-scarce domains.



There are no comments yet.


page 1

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.