Exploring the Pareto front of multi-objective COVID-19 mitigation policies using reinforcement learning

by   Mathieu Reymond, et al.

Infectious disease outbreaks can have a disruptive impact on public health and societal processes. As decision making in the context of epidemic mitigation is hard, reinforcement learning provides a methodology to automatically learn prevention strategies in combination with complex epidemic models. Current research focuses on optimizing policies w.r.t. a single objective, such as the pathogen's attack rate. However, as the mitigation of epidemics involves distinct, and possibly conflicting criteria (i.a., prevalence, mortality, morbidity, cost), a multi-objective approach is warranted to learn balanced policies. To lift this decision-making process to real-world epidemic models, we apply deep multi-objective reinforcement learning and build upon a state-of-the-art algorithm, Pareto Conditioned Networks (PCN), to learn a set of solutions that approximates the Pareto front of the decision problem. We consider the first wave of the Belgian COVID-19 epidemic, which was mitigated by a lockdown, and study different deconfinement strategies, aiming to minimize both COVID-19 cases (i.e., infections and hospitalizations) and the societal burden that is induced by the applied mitigation measures. We contribute a multi-objective Markov decision process that encapsulates the stochastic compartment model that was used to inform policy makers during the COVID-19 epidemic. As these social mitigation measures are implemented in a continuous action space that modulates the contact matrix of the age-structured epidemic model, we extend PCN to this setting. We evaluate the solution returned by PCN, and observe that it correctly learns to reduce the social burden whenever the hospitalization rates are sufficiently low. In this work, we thus show that multi-objective reinforcement learning is attainable in complex epidemiological models and provides essential insights to balance complex mitigation policies.


page 1

page 2

page 3

page 4


Multi-Objective Reinforcement Learning for Infectious Disease Control with Application to COVID-19 Spread

Severe infectious diseases such as the novel coronavirus (COVID-19) pose...

Deep reinforcement learning for large-scale epidemic control

Epidemics of infectious diseases are an important threat to public healt...

Planning Multiple Epidemic Interventions with Reinforcement Learning

Combating an epidemic entails finding a plan that describes when and how...

Learning to Act: Novel Integration of Algorithms and Models for Epidemic Preparedness

In this work we present a framework which may transform research and pra...

Evaluating COVID-19 vaccine allocation policies using Bayesian m-top exploration

Individual-based epidemiological models support the study of fine-graine...

Taming Lagrangian Chaos with Multi-Objective Reinforcement Learning

We consider the problem of two active particles in 2D complex flows with...

Reinforcement Learning for Optimization of COVID-19 Mitigation policies

The year 2020 has seen the COVID-19 virus lead to one of the worst globa...

Please sign up or login with your details

Forgot password? Click here to reset