Exploring the flavor structure of quarks and leptons with reinforcement learning

04/27/2023
by   Satsuki Nishimura, et al.
0

We propose a method to explore the flavor structure of quarks and leptons with reinforcement learning. As a concrete model, we utilize a basic policy-based algorithm for models with U(1) flavor symmetry. By training neural networks on the U(1) charges of quarks and leptons, the agent finds 21 models to be consistent with experimentally measured masses and mixing angles of quarks and leptons. In particular, an intrinsic value of normal ordering tends to be larger than that of inverted ordering, and the normal ordering is well fitted with the current experimental data in contrast to the inverted ordering. A specific value of effective mass for the neutrinoless double beta decay and a sizable leptonic CP violation induced by an angular component of flavon field are predicted by autonomous behavior of the agent.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro