Exploring search space trees using an adapted version of Monte Carlo tree search for combinatorial optimization problems

10/22/2020
by   Jorik Jooken, et al.
0

In this article, a novel approach to solve combinatorial optimization problems is proposed. This approach makes use of a heuristic algorithm to explore the search space tree of a problem instance. The algorithm is based on Monte Carlo tree search, a popular algorithm in game playing that is used to explore game trees. By leveraging the combinatorial structure of a problem, several enhancements to the algorithm are proposed. These enhancements aim to efficiently explore the search space tree by pruning subtrees, using a heuristic simulation policy, reducing the domains of variables by eliminating dominated value assignments and using a beam width. They are demonstrated for two specific combinatorial optimization problems: the quay crane scheduling problem with non-crossing constraints and the 0-1 knapsack problem. Computational results show that the algorithm achieves promising results for both problems and eight new best solutions for a benchmark set of instances are found for the former problem. These results indicate that the algorithm is competitive with the state-of-the-art. Apart from this, the results also show evidence that the algorithm is able to learn to correct the incorrect choices made by constructive heuristics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset