Exploring Bayesian approaches to eQTL mapping through probabilistic programming

06/12/2019
by   Dimitrios V. Vavoulis, et al.
0

The discovery of genomic polymorphisms influencing gene expression (also known as expression quantitative trait loci or eQTLs) can be formulated as a sparse Bayesian multivariate/multiple regression problem. An important aspect in the development of such models is the implementation of bespoke inference methodologies, a process which can become quite laborious, when multiple candidate models are being considered. We describe automatic, black-box inference in such models using Stan, a popular probabilistic programming language. The utilisation of systems like Stan can facilitate model prototyping and testing, thus accelerating the data modelling process. The code described in this chapter can be found at https://github.com/dvav/eQTLBookChapter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro