Explicit Numerical Methods for High Dimensional Stochastic Nonlinear Schrödinger Equation: Divergence, Regularity and Convergence

12/19/2021
by   Jianbo Cui, et al.
0

This paper focuses on the construction and analysis of explicit numerical methods of high dimensional stochastic nonlinear Schrodinger equations (SNLSEs). We first prove that the classical explicit numerical methods are unstable and suffer from the numerical divergence phenomenon. Then we propose a kind of explicit splitting numerical methods and prove that the structure-preserving splitting strategy is able to enhance the numerical stability. Furthermore, we establish the regularity analysis and strong convergence analysis of the proposed schemes for SNLSEs based on two key ingredients. One ingredient is proving new regularity estimates of SNLSEs by constructing a logarithmic auxiliary functional and exploiting the Bourgain space. Another one is providing a dedicated error decomposition formula and a novel truncated stochastic Gronwall's lemma, which relies on the tail estimates of underlying stochastic processes. In particular, our result answers the strong convergence problem of numerical methods for 2D SNLSEs emerged from [C. Chen, J. Hong and A. Prohl, Stoch. Partial Differ. Equ. Anal. Comput. 4 (2016), no. 2, 274-318] and [J. Cui and J. Hong, SIAM J. Numer. Anal. 56 (2018), no. 4, 2045-2069].

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset