Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
We propose efficient numerical methods for nonseparable non-canonical Hamiltonian systems which are explicit, K-symplectic in the extended phase space with long time energy conservation properties. They are based on extending the original phase space to several copies of the phase space and imposing a mechanical restraint on the copies of the phase space. Explicit K-symplectic methods are constructed for three non-canonical Hamiltonian systems. Numerical results show that they outperform the higher order Runge-Kutta methods in preserving the phase orbit and the energy of the system over long time.
READ FULL TEXT