Explaining Question Answering Models through Text Generation

04/12/2020 ∙ by Veronica Latcinnik, et al. ∙ 24

Large pre-trained language models (LMs) have been shown to perform surprisingly well when fine-tuned on tasks that require commonsense and world knowledge. However, in end-to-end architectures, it is difficult to explain what is the knowledge in the LM that allows it to make a correct prediction. In this work, we propose a model for multi-choice question answering, where a LM-based generator generates a textual hypothesis that is later used by a classifier to answer the question. The hypothesis provides a window into the information used by the fine-tuned LM that can be inspected by humans. A key challenge in this setup is how to constrain the model to generate hypotheses that are meaningful to humans. We tackle this by (a) joint training with a simple similarity classifier that encourages meaningful hypotheses, and (b) by adding loss functions that encourage natural text without repetitions. We show on several tasks that our model reaches performance that is comparable to end-to-end architectures, while producing hypotheses that elucidate the knowledge used by the LM for answering the question.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.