Explaining and Improving Model Behavior with k Nearest Neighbor Representations

10/18/2020 ∙ by Nazneen Fatema Rajani, et al. ∙ 0

Interpretability techniques in NLP have mainly focused on understanding individual predictions using attention visualization or gradient-based saliency maps over tokens. We propose using k nearest neighbor (kNN) representations to identify training examples responsible for a model's predictions and obtain a corpus-level understanding of the model's behavior. Apart from interpretability, we show that kNN representations are effective at uncovering learned spurious associations, identifying mislabeled examples, and improving the fine-tuned model's performance. We focus on Natural Language Inference (NLI) as a case study and experiment with multiple datasets. Our method deploys backoff to kNN for BERT and RoBERTa on examples with low model confidence without any update to the model parameters. Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.