Explaining Adversarial Vulnerability with a Data Sparsity Hypothesis
Despite many proposed algorithms to provide robustness to deep learning (DL) models, DL models remain susceptible to adversarial attacks. We hypothesize that the adversarial vulnerability of DL models stems from two factors. The first factor is data sparsity which is that in the high dimensional data space, there are large regions outside the support of the data distribution. The second factor is the existence of many redundant parameters in the DL models. Owing to these factors, different models are able to come up with different decision boundaries with comparably high prediction accuracy. The appearance of the decision boundaries in the space outside the support of the data distribution does not affect the prediction accuracy of the model. However, they make an important difference in the adversarial robustness of the model. We propose that the ideal decision boundary should be as far as possible from the support of the data distribution.In this paper, we develop a training framework for DL models to learn such decision boundaries spanning the space around the class distributions further from the data points themselves. Semi-supervised learning was deployed to achieve this objective by leveraging unlabeled data generated in the space outside the support of the data distribution. We measure adversarial robustness of the models trained using this training framework against well-known adversarial attacks We found that our results, other regularization methods and adversarial training also support our hypothesis of data sparcity. We show that the unlabeled data generated by noise using our framework is almost as effective as unlabeled data, sourced from existing data sets or generated by synthesis algorithms, on adversarial robustness. Our code is available at https://github.com/MahsaPaknezhad/AdversariallyRobustTraining.
READ FULL TEXT