Explainable Social Contextual Image Recommendation with Hierarchical Attention

06/03/2018
by   Le Wu, et al.
0

Image based social networks are among the most popular social networking services in recent years. With tremendous images uploaded everyday, understanding users' preferences to the user-generated images and recommending them to users have become an urgent need. However, this is a challenging task. On one hand, we have to overcome the extremely data sparsity issue in image recommendation. On the other hand, we have to model the complex aspects that influence users' preferences to these highly subjective content from the heterogeneous data. In this paper, we develop an explainable social contextual image recommendation model to simultaneously explain and predict users' preferences to images. Specifically, in addition to user interest modeling in the standard recommendation, we identify three key aspects that affect each user's preference on the social platform, where each aspect summarizes a contextual representation from the complex relationships between users and images. We design a hierarchical attention model in recommendation process given the three contextual aspects. Particularly, the bottom layered attention networks learn to select informative elements of each aspect from heterogeneous data, and the top layered attention network learns to score the aspect importance of the three identified aspects for each user. In this way, we could overcome the data sparsity issue by leveraging the social contextual aspects from heterogeneous data, and explain the underlying reasons for each user's behavior with the learned hierarchial attention scores. Extensive experimental results on real-world datasets clearly show the superiority of our proposed model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset