Explainable Patterns: Going from Findings to Insights to Support Data Analytics Democratization
In the past decades, massive efforts involving companies, non-profit organizations, governments, and others have been put into supporting the concept of data democratization, promoting initiatives to educate people to confront information with data. Although this represents one of the most critical advances in our free world, access to data without concrete facts to check or the lack of an expert to help on understanding the existing patterns hampers its intrinsic value and lessens its democratization. So the benefits of giving full access to data will only be impactful if we go a step further and support the Data Analytics Democratization, assisting users in transforming findings into insights without the need of domain experts to promote unconstrained access to data interpretation and verification. In this paper, we present Explainable Patterns (ExPatt), a new framework to support lay users in exploring and creating data storytellings, automatically generating plausible explanations for observed or selected findings using an external (textual) source of information, avoiding or reducing the need for domain experts. ExPatt applicability is confirmed via different use-cases involving world demographics indicators and Wikipedia as an external source of explanations, showing how it can be used in practice towards the data analytics democratization.
READ FULL TEXT