Explainable Artificial Intelligence in Process Mining: Assessing the Explainability-Performance Trade-Off in Outcome-Oriented Predictive Process Monitoring

by   Alexander Stevens, et al.

Recently, a shift has been made in the field of Outcome-Oriented Predictive Process Monitoring (OOPPM) to use models from the eXplainable Artificial Intelligence paradigm, however the evaluation still occurs mainly through performance-based metrics not accounting for the implications and lack of actionability of the explanations. In this paper, we define explainability by the interpretability of the explanations (through the widely-used XAI properties parsimony and functional complexity) and the faithfulness of the explainability model (through monotonicity and level of disagreement). The introduced properties are analysed along the event, case, and control flow perspective that are typical of a process-based analysis. This allows to quantitatively compare, inter alia, inherently created explanations (e.g., logistic regression coefficients) with post-hoc explanations (e.g., Shapley values). Moreover, this paper contributes a guideline named X-MOP to practitioners to select the appropriate model based on the event log specifications and the task at hand, by providing insight into how the varying preprocessing, model complexity and post-hoc explainability techniques typical in OOPPM influence the explainability of the model. To this end, we benchmark seven classifiers on thirteen real-life events logs.


Quantifying Explainability in NLP and Analyzing Algorithms for Performance-Explainability Tradeoff

The healthcare domain is one of the most exciting application areas for ...

Explain, Adapt and Retrain: How to improve the accuracy of a PPM classifier through different explanation styles

Recent papers have introduced a novel approach to explain why a Predicti...

BASED-XAI: Breaking Ablation Studies Down for Explainable Artificial Intelligence

Explainable artificial intelligence (XAI) methods lack ground truth. In ...

XAI in the context of Predictive Process Monitoring: Too much to Reveal

Predictive Process Monitoring (PPM) has been integrated into process min...

(Un)reasonable Allure of Ante-hoc Interpretability for High-stakes Domains: Transparency Is Necessary but Insufficient for Explainability

Ante-hoc interpretability has become the holy grail of explainable machi...

A Lightweight, Efficient and Explainable-by-Design Convolutional Neural Network for Internet Traffic Classification

Traffic classification, i.e. the identification of the type of applicati...

Please sign up or login with your details

Forgot password? Click here to reset