Experiments in Adaptive Replanning for Fast Autonomous Flight in Forests

03/02/2022
by   Laura Jarin-Lipschitz, et al.
0

Fast, autonomous flight in unstructured, cluttered environments such as forests is challenging because it requires the robot to compute new plans in realtime on a computationally-constrained platform. In this paper, we enable this capability with a search-based planning framework that adapts sampling density in realtime to find dynamically-feasible plans while remaining computationally tractable. A paramount challenge in search-based planning is that dense obstacles both necessitate large graphs (to guarantee completeness) and reduce the efficiency of graph search (as heuristics become less accurate). To address this, we develop a planning framework with two parts: one that maximizes planner completeness for a given graph size, and a second that dynamically maximizes graph size subject to computational constraints. This framework is enabled by motion planning graphs that are defined by a single parameter, dispersion, which quantifies the maximum trajectory cost to reach an arbitrary state from the graph. We show through real and simulated experiments how the dispersion can be adapted to different environments in realtime, allowing operation in environments with varying density. The simulated experiment demonstrates improved performance over a baseline search-based planning algorithm. We also demonstrate flight speeds of up to 2.5m/s in real-world cluttered pine forests.

READ FULL TEXT

page 1

page 4

page 6

research
03/26/2021

Dispersion-Minimizing Motion Primitives for Search-Based Motion Planning

Search-based planning with motion primitives is a powerful motion planni...
research
10/07/2017

Search-based Motion Planning for Aggressive Flight in SE(3)

Quadrotors with large thrust-to-weight ratios are able to track aggressi...
research
01/29/2021

Interleaving Graph Search and Trajectory Optimization for Aggressive Quadrotor Flight

Quadrotors can achieve aggressive flight by tracking complex maneuvers a...
research
02/14/2021

Urban Metric Maps for Small Unmanned Aircraft Systems Motion Planning

Low-altitude urban flight planning for small Unmanned Aircraft Systems (...
research
10/05/2022

Density Planner: Minimizing Collision Risk in Motion Planning with Dynamic Obstacles using Density-based Reachability

Autonomous systems with uncertainties are prevalent in robotics. However...
research
05/31/2019

Fast and Agile Vision-Based Flight with Teleoperation and Collision Avoidance on a Multirotor

We present a multirotor architecture capable of aggressive autonomous fl...
research
01/04/2013

The Sum-over-Forests density index: identifying dense regions in a graph

This work introduces a novel nonparametric density index defined on grap...

Please sign up or login with your details

Forgot password? Click here to reset