Experimental Evaluation of Empirical NB-IoT Propagation Modelling in a Deep-Indoor Scenario

06/01/2020
by   Jakob Thrane, et al.
0

Path-loss modelling in deep-indoor scenarios is a difficult task. On one hand, the theoretical formulae solely dependent on transmitter-receiver distance are too simple; on the other hand, discovering all significant factors affecting the loss of signal power in a given situation may often be infeasible. In this paper, we experimentally investigate the influence of deep-indoor features such as indoor depth, indoor distance and distance to the closest tunnel corridor and the effect on received power using NB-IoT. We describe a measurement campaign performed in a system of long underground tunnels, and we analyse linear regression models involving the engineered features. We show that the current empirical models for NB-IoT signal attenuation are inaccurate in a deep-indoor scenario. We observe that 1) indoor distance and penetration depth do not explain the signal attenuation well and increase the error of the prediction by 2-12 dB using existing models, and 2) a promising feature of average distance to the nearest corridor is identified.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro