Experimental Assessment of a Forward-Collision Warning System Fusing Deep Learning and Decentralized Radio Sensing

09/15/2023
by   Jorge D. Cardenas, et al.
0

This paper presents the idea of an automatic forward-collision warning system based on a decentralized radio sensing (RS) approach. In this framework, a vehicle in receiving mode employs a continuous waveform (CW) transmitted by a second vehicle as a probe signal to detect oncoming vehicles and warn the driver of a potential forward collision. Such a CW can easily be incorporated as a pilot signal within the data frame of current multicarrier vehicular communication systems. Detection of oncoming vehicles is performed by a deep learning (DL) module that analyzes the features of the Doppler signature imprinted on the CW probe signal by a rapidly approaching vehicle. This decentralized CW RS approach was assessed experimentally using data collected by a series of field trials conducted in a two-lanes high-speed highway. Detection performance was evaluated for two different DL models: a long short-term memory network and a convolutional neural network. The obtained results demonstrate the feasibility of the envisioned forward-collision warning system based on the fusion of DL and decentralized CW RS.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro