Expected Complexity of Routing in Θ 6 and Half-Θ 6 Graphs

10/31/2019 ∙ by Prosenjit Bose, et al. ∙ 0

We study online routing algorithms on the Θ6-graph and the half-Θ6-graph (which is equivalent to a variant of the Delaunay triangulation). Given a source vertex s and a target vertex t in the Θ6-graph (resp. half-Θ6-graph), there exists a deterministic online routing algorithm that finds a path from s to t whose length is at most 2 st (resp. 2.89 st) which is optimal in the worst case [Bose et al., siam J. on Computing, 44(6)]. We propose alternative, slightly simpler routing algorithms that are optimal in the worst case and for which we provide an analysis of the average routing ratio for the Θ6-graph and half-Θ6-graph defined on a Poisson point process. For the Θ6-graph, our online routing algorithm has an expected routing ratio of 1.161 (when s and t random) and a maximum expected routing ratio of 1.22 (maximum for fixed s and t where all other points are random), much better than the worst-case routing ratio of 2. For the half-Θ6-graph, our memoryless online routing algorithm has an expected routing ratio of 1.43 and a maximum expected routing ratio of 1.58. Our online routing algorithm that uses a constant amount of additional memory has an expected routing ratio of 1.34 and a maximum expected routing ratio of 1.40. The additional memory is only used to remember the coordinates of the starting point of the route. Both of these algorithms have an expected routing ratio that is much better than their worst-case routing ratio of 2.89.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.