Expectation Learning for Adaptive Crossmodal Stimuli Association
The human brain is able to learn, generalize, and predict crossmodal stimuli. Learning by expectation fine-tunes crossmodal processing at different levels, thus enhancing our power of generalization and adaptation in highly dynamic environments. In this paper, we propose a deep neural architecture trained by using expectation learning accounting for unsupervised learning tasks. Our learning model exhibits a self-adaptable behavior, setting the first steps towards the development of deep learning architectures for crossmodal stimuli association.
READ FULL TEXT