ExpDNN: Explainable Deep Neural Network

04/26/2020
by   Chi-Hua Chen, et al.
0

In recent years, deep neural networks have been applied to obtain high performance of prediction, classification, and pattern recognition. However, the weights in these deep neural networks are difficult to be explained. Although a linear regression method can provide explainable results, the method is not suitable in the case of input interaction. Therefore, an explainable deep neural network (ExpDNN) with explainable layers is proposed to obtain explainable results in the case of input interaction. Three cases were given to evaluate the proposed ExpDNN, and the results showed that the absolute value of weight in an explainable layer can be used to explain the weight of corresponding input for feature extraction.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro