Exemplar Fine-Tuning for 3D Human Pose Fitting Towards In-the-Wild 3D Human Pose Estimation
We propose a method for building large collections of human poses with full 3D annotations captured `in the wild', for which specialized capture equipment cannot be used. We start with a dataset with 2D keypoint annotations such as COCO and MPII and generates corresponding 3D poses. This is done via Exemplar Fine-Tuning (EFT), a new method to fit a 3D parametric model to 2D keypoints. EFT is accurate and can exploit a data-driven pose prior to resolve the depth reconstruction ambiguity that comes from using only 2D observations as input. We use EFT to augment these large in-the-wild datasets with plausible and accurate 3D pose annotations. We then use this data to strongly supervise a 3D pose regression network, achieving state-of-the-art results in standard benchmarks, including the ones collected outdoor. This network also achieves unprecedented 3D pose estimation quality on extremely challenging Internet videos.
READ FULL TEXT