Excluding a ladder
Which graph classes C exclude a fixed ladder as a minor? We show that this is the case if and only if all graphs G in C admit a proper vertex coloring with a bounded number of colors such that for every 2-connected subgraph H of G, there is a color that appears exactly once in H. If one were considering all connected subgraphs of G instead, then such a coloring is known as a centered coloring, and the minimum achievable number of colors is the treedepth of G. Classes of graphs with bounded treedepth are exactly those that exclude a fixed path as a subgraph, or equivalently, as a minor. In this sense, the structure of graphs excluding a fixed ladder as a minor resembles the structure of graphs without long paths. Another similarity is as follows: It is an easy observation that every connected graph with two vertex-disjoint paths of length k has a path of length k+1. We show that every 3-connected graph with sufficiently many vertex-disjoint subgraphs containing a k ladder minor has a (k+1)-ladder minor. Our structural results have applications to poset dimension. We show that posets whose cover graphs exclude a fixed ladder as a minor have bounded dimension. This is a new step towards the goal of understanding which graphs are unavoidable as minors in cover graphs of posets with large dimension.
READ FULL TEXT