Exact Support Recovery in Federated Regression with One-shot Communication
Federated learning provides a framework to address the challenges of distributed computing, data ownership and privacy over a large number of distributed clients with low computational and communication capabilities. In this paper, we study the problem of learning the exact support of sparse linear regression in the federated learning setup. We provide a simple communication efficient algorithm which only needs one-shot communication with the centralized server to compute the exact support. Our method does not require the clients to solve any optimization problem and thus, can be run on devices with low computational capabilities. Our method is naturally robust to the problems of client failure, model poisoning and straggling clients. We formally prove that our method requires a number of samples per client that is polynomial with respect to the support size, but independent of the dimension of the problem. We require the number of distributed clients to be logarithmic in the dimension of the problem. If the predictor variables are mutually independent then the overall sample complexity matches the optimal sample complexity of the non-federated centralized setting. Furthermore, our method is easy to implement and has an overall polynomial time complexity.
READ FULL TEXT