Exact structures for persistence modules

08/03/2023
by   Benjamin Blanchette, et al.
0

We discuss applications of exact structures and relative homological algebra to the study of invariants of multiparameter persistence modules. This paper is mostly expository, but does contain a pair of novel results. Over finite posets, classical arguments about the relative projective modules of an exact structure make use of Auslander-Reiten theory. One of our results establishes a new adjunction which allows us to "lift" these arguments to certain infinite posets over which Auslander-Reiten theory is not available. We give several examples of this lifting, in particular highlighting the non-existence and existence of resolutions by upsets when working with finitely presentable representations of the plane and of the closure of the positive quadrant, respectively. We then restrict our attention to finite posets. In this setting, we discuss the relationship between the global dimension of an exact structure and the representation dimension of the incidence algebra of the poset. We conclude with our second novel contribution. This is an explicit description of the irreducible morphisms between relative projective modules for several exact structures which have appeared previously in the literature.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset