Exact Crossing Number Parameterized by Vertex Cover

06/14/2019
by   Petr Hliněný, et al.
0

We prove that the exact crossing number of a graph can be efficiently computed for simple graphs having bounded vertex cover. In more precise words, Crossing Number is in FPT when parameterized by the vertex cover size. This is a notable advance since we know only very few nontrivial examples of graph classes with unbounded and yet efficiently computable crossing number. Our result strengthens previous result of Lokshtanov [arXiv, 2015] that Optimal Linear Arrangement is in FPT when parameterized by the vertex cover size, and we use a similar approach of reducing the problem to a tractable instance of Integer Quadratic Programming as in Lokshtanov's paper.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset