Evolutionary optimization of an experimental apparatus

05/17/2013
by   I. Geisel, et al.
uni hannover
0

In recent decades, cold atom experiments have become increasingly complex. While computers control most parameters, optimization is mostly done manually. This is a time-consuming task for a high-dimensional parameter space with unknown correlations. Here we automate this process using a genetic algorithm based on Differential Evolution. We demonstrate that this algorithm optimizes 21 correlated parameters and that it is robust against local maxima and experimental noise. The algorithm is flexible and easy to implement. Thus, the presented scheme can be applied to a wide range of experimental optimization tasks.

READ FULL TEXT VIEW PDF
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

02/06/2021

Learning adaptive differential evolution algorithm from optimization experiences by policy gradient

Differential evolution is one of the most prestigious population-based s...
05/23/2019

Combine PPO with NES to Improve Exploration

We introduce two approaches for combining neural evolution strategy (NES...
06/12/2020

A supervised learning approach involving active subspaces for an efficient genetic algorithm in high-dimensional optimization problems

In this work, we present an extension of the genetic algorithm (GA) whic...
02/25/2004

Evolutionary design of photometric systems and its application to Gaia

Designing a photometric system to best fulfil a set of scientific goals ...
05/20/2021

DEHB: Evolutionary Hyberband for Scalable, Robust and Efficient Hyperparameter Optimization

Modern machine learning algorithms crucially rely on several design deci...
04/19/2018

Limited Evaluation Cooperative Co-evolutionary Differential Evolution for Large-scale Neuroevolution

Many real-world control and classification tasks involve a large number ...
03/05/2021

Golem: An algorithm for robust experiment and process optimization

Numerous challenges in science and engineering can be framed as optimiza...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.

References

  • Hajima et al. (1992) R. Hajima, N. Takeda, H. Ohashi,  and M. Akiyama, “Optimization of wiggler magnets ordering using a genetic algorithm,” Nucl. Instrum. Methods 318, 822 – 824 (1992).
  • Bacci et al. (2007) A. Bacci, C. Maroli, V. Petrillo, A. Rossi,  and L. Serafini, “Maximizing the brightness of an electron beam by means of a genetic algorithm,” Nucl. Instrum. Methods 263, 488 – 496 (2007).
  • Gilijamse et al. (2006) J. J. Gilijamse, J. Küpper, S. Hoekstra, N. Vanhaecke, S. Y. T. van de Meerakker,  and G. Meijer, “Optimizing the stark-decelerator beamline for the trapping of cold molecules using evolutionary strategies,” Phys. Rev. A 73, 063410 (2006).
  • Woolley et al. (2011) R. A. Woolley, J. Stirling, A. Radocea, N. Krasnogor,  and P. Moriarty, “Automated probe microscopy via evolutionary optimization at the atomic scale,” Appl. Phys. Lett. 98, 253104–253104 (2011).
  • Obayashi et al. (2000)

    S. Obayashi, D. Sasaki, Y. Takeguchi,  and N. Hirose, “Multiobjective evolutionary computation for supersonic wing-shape optimization,” 

    IEEE Trans. Evol. Comput. 4, 182–187 (2000).
  • Zeidler et al. (2001)

    D. Zeidler, S. Frey, K.-L. Kompa,  and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” 

    Phys. Rev. A 64, 023420 (2001).
  • Assion et al. (1998) A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle,  and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
  • Rohringer et al. (2008) W. Rohringer, R. Bucker, S. Manz, T. Betz, C. Koller, M. Gobel, A. Perrin, J. Schmiedmayer,  and T. Schumm, “Stochastic optimization of a cold atom experiment using a genetic algorithm,” Appl. Phys. Lett. 93, 264101 (2008).
  • Rohringer et al. (2011) W. Rohringer, D. Fischer, M. Trupke, J. Schmiedmayer,  and T. Schumm, Stochastic Optimization of Bose-Einstein Condensation Using a Genetic Algorithm, Stochastic Optimization - Seeing the Optimal for the Uncertain, edited by D. I. Dritsas (InTech, 2011).
  • Storn and Price (1995) R. Storn and K. Price, “Differential evolution-a simple and efficient adaptive scheme for global optimisation over continuous spaces,” Tech. Rep. (1995).
  • Price, Storn, and Lampinen (2005) K. Price, R. Storn,  and J. Lampinen, Differential evolution: a practical approach to global optimization (Springer-Verlag New York Inc, 2005).
  • Cordes et al. (2009)

    K. Cordes, P. Mikulastik, A. Vais,  and J. Ostermann, “Extrinsic calibration of a stereo camera system using a 3d cad model considering the uncertainties of estimated feature points,” 

    Proc. Conf. Visual Media Production , 135–143 (2009).
  • Jin and Branke (2005) Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments-a survey,” IEEE Trans. Evol. Comput. 9, 303–317 (2005).
  • Das, Konar, and Chakraborty (2005) S. Das, A. Konar,  and U. Chakraborty, “Improved differential evolution algorithms for handling noisy optimization problems,” Proc. IEEE Congr. Evol. Comput. 2, 1691–1698 Vol. 2 (2005).
  • Zielinski and Laur (2008) K. Zielinski and R. Laur, “Stopping criteria for differential evolution in constrained single-objective optimization,” in Advances in differential evolution (Springer, 2008) pp. 111–138.
  • Ackley (1987) D. H. Ackley, A connectionist machine for genetic hillclimbing (Kluwer Academic Publishers, Norwell, MA, USA, 1987).
  • (17) “The function was parametrized according to
    with d being the number of dimensions and ranging from -10 to 10.” .
  • Jöllenbeck et al. (2011) S. Jöllenbeck, J. Mahnke, R. Randoll, W. Ertmer, J. Arlt,  and C. Klempt, “Hexapole-compensated magneto-optical trap on a mesoscopic atom chip,” Phys. Rev. A 83, 043406 (2011).
  • Babu and Jehan (2003) B. V. Babu and M. Jehan, “Differential evolution for multi-objective optimization,” Proc. Congr. Evol. Comput. 4, 2696–2703 (2003).