Evolutionary Gait Transfer of Multi-Legged Robots in Complex Terrains

12/24/2020
by   Min Jiang, et al.
5

Robot gait optimization is the task of generating an optimal control trajectory under various internal and external constraints. Given the high dimensions of control space, this problem is particularly challenging for multi-legged robots walking in complex and unknown environments. Existing literatures often regard the gait generation as an optimization problem and solve the gait optimization from scratch for robots walking in a specific environment. However, such approaches do not consider the use of pre-acquired knowledge which can be useful in improving the quality and speed of motion generation in complex environments. To address the issue, this paper proposes a transfer learning-based evolutionary framework for multi-objective gait optimization, named Tr-GO. The idea is to initialize a high-quality population by using the technique of transfer learning, so any kind of population-based optimization algorithms can be seamlessly integrated into this framework. The advantage is that the generated gait can not only dynamically adapt to different environments and tasks, but also simultaneously satisfy multiple design specifications (e.g., speed, stability). The experimental results show the effectiveness of the proposed framework for the gait optimization problem based on three multi-objective evolutionary algorithms: NSGA-II, RM-MEDA and MOPSO. When transferring the pre-acquired knowledge from the plain terrain to various inclined and rugged ones, the proposed Tr-GO framework accelerates the evolution process by a minimum of 3-4 times compared with non-transferred scenarios.

READ FULL TEXT

page 1

page 4

page 6

page 8

page 9

research
01/03/2020

Gait Graph Optimization: Generate Variable Gaits from One Base Gait for Lower-limb Rehabilitation Exoskeleton Robots

The most concentrated application of lower-limb rehabilitation exoskelet...
research
10/19/2019

Evolutionary Dynamic Multi-objective Optimization Via Regression Transfer Learning

Dynamic multi-objective optimization problems (DMOPs) remain a challenge...
research
12/03/2021

Snake Robot Gait Decomposition and Gait Parameter Optimization

This paper proposes Gait Decomposition (G.D), a method of mathematically...
research
08/21/2023

Humanoid Robot Co-Design: Coupling Hardware Design with Gait Generation via Hybrid Zero Dynamics

Selecting robot design parameters can be challenging since these paramet...
research
12/10/2022

Wake-Based Locomotion Gait Design for Aerobat

Flying animals, such as bats, fly through their fluidic environment as t...
research
05/11/2021

A Hybrid Decomposition-based Multi-objective Evolutionary Algorithm for the Multi-Point Dynamic Aggregation Problem

An emerging optimisation problem from the real-world applications, named...
research
06/13/2020

Fault Tolerant Free Gait and Footstep Planning for Hexapod Robot Based on Monte-Carlo Tree

Legged robots can pass through complex field environments by selecting g...

Please sign up or login with your details

Forgot password? Click here to reset