Evolutionary Deep Nets for Non-Intrusive Load Monitoring

03/06/2023
by   Jinsong Wang, et al.
0

Non-Intrusive Load Monitoring (NILM) is an energy efficiency technique to track electricity consumption of an individual appliance in a household by one aggregated single, such as building level meter readings. The goal of NILM is to disaggregate the appliance from the aggregated singles by computational method. In this work, deep learning approaches are implemented to operate the desegregations. Deep neural networks, convolutional neural networks, and recurrent neural networks are employed for this operation. Additionally, sparse evolutionary training is applied to accelerate training efficiency of each deep learning model. UK-Dale dataset is used for this work.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro