Evolution of SLAM: Toward the Robust-Perception of Autonomy

02/13/2023
by   B. Udugama, et al.
0

Simultaneous localisation and mapping (SLAM) is the problem of autonomous robots to construct or update a map of an undetermined unstructured environment while simultaneously estimate the pose in it. The current trend towards self-driving vehicles has influenced the development of robust SLAM techniques over the last 30 years. This problem is addressed by using a standard sensor or a sensor array (Ultrasonic sensor, LIDAR, Camera, Kinect RGB-D) with sensor fusion techniques to achieve the perception step. Sensing method is determined by considering the specifications of the environment to extract the features. Then the usage of classical Filter-based approaches, the global optimisation approach which is a popular method for visual-based SLAM and convolutional neural network-based methods such as deep learning-based SLAM are discussed whereas considering how to overcome the localisation and mapping issues. The robustness and scalability in long-term autonomy, performance and other new directions in the algorithms compared with each other to sort out. This paper is looking at the published previous work with a judgemental perspective from sensors to algorithm development while discussing open challenges and new research frontiers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset