Evolution of Physical-Layer Communications Research in the Post-5G Era

01/04/2019
by   Vasanthan Raghavan, et al.
0

The evolving Fifth Generation New Radio (5G-NR) cellular standardization efforts at the Third Generation Partnership Project (3GPP) brings into focus a number of questions on relevant research problems in physical-layer communications for study by both academia and industry. To address this question, we show that the peak download data rates for both WiFi and cellular systems have been scaling exponentially with time over the last twenty five years. While keeping up with the historic cellular trends will be possible in the near-term with a modest bandwidth and hardware complexity expansion, even a reasonable stretching of this road-map into the far future would require significant bandwidth accretion, perhaps possible at the millimeter wave, sub-millimeter wave, or Terahertz (THz) regimes. The consequent increase in focus on systems at higher carrier frequencies necessitates a paradigm shift from the reuse of over-simplified (yet mathematically elegant) models, often inherited from sub-6 GHz systems, to a more holistic view where real measurements guide, motivate and refine the building of relevant but possibly complicated models, solution space(s), and good solutions. To motivate the need for this shift, we illustrate how the traditional abstraction fails to correctly estimate the delay spread of millimeter wave wireless channels and hand blockage losses at higher carrier frequencies. We conclude this paper with a broad set of implications for future research prospects at the physical-layer including key use-cases, possible research policy initiatives, and structural changes needed in telecommunications departments at universities.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset