Event History Analysis of Dynamic Communication Networks
Statistical analysis on networks has received growing attention due to demand from various emerging applications. In dynamic networks, one of the key interests is to model the event history of time-stamped interactions amongst nodes. We propose to model dynamic directed communication networks via multivariate counting processes. A pseudo partial likelihood approach is exploited to capture the network dependence structure. Asymptotic results of the resulting estimation are established. Numerical results are performed to demonstrate effectiveness of our proposal.
READ FULL TEXT