Evaluation of Cross-View Matching to Improve Ground Vehicle Localization with Aerial Perception

03/13/2020
by   Deeksha Dixit, et al.
0

Cross-view matching refers to the problem of finding the closest match to a given query ground-view image to one from a database of aerial images. If the aerial images are geotagged, then the closest matching aerial image can be used to localize the query ground-view image. Recently, due to the success of deep learning methods, a number of cross-view matching techniques have been proposed. These techniques perform well for the matching of isolated query images. In this paper, we evaluate cross-view matching for the task of localizing a ground vehicle over a longer trajectory. We use the cross-view matching module as a sensor measurement fused with a particle filter. We evaluate the performance of this method using a city-wide dataset collected in photorealistic simulation using five parameters: height of aerial images, the pitch of the aerial camera mount, field-of-view of ground camera, measurement model and resampling strategy for the particles in the particle filter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset