Evaluating the Susceptibility of Pre-Trained Language Models via Handcrafted Adversarial Examples

09/05/2022
by   Hezekiah J. Branch, et al.
0

Recent advances in the development of large language models have resulted in public access to state-of-the-art pre-trained language models (PLMs), including Generative Pre-trained Transformer 3 (GPT-3) and Bidirectional Encoder Representations from Transformers (BERT). However, evaluations of PLMs, in practice, have shown their susceptibility to adversarial attacks during the training and fine-tuning stages of development. Such attacks can result in erroneous outputs, model-generated hate speech, and the exposure of users' sensitive information. While existing research has focused on adversarial attacks during either the training or the fine-tuning of PLMs, there is a deficit of information on attacks made between these two development phases. In this work, we highlight a major security vulnerability in the public release of GPT-3 and further investigate this vulnerability in other state-of-the-art PLMs. We restrict our work to pre-trained models that have not undergone fine-tuning. Further, we underscore token distance-minimized perturbations as an effective adversarial approach, bypassing both supervised and unsupervised quality measures. Following this approach, we observe a significant decrease in text classification quality when evaluating for semantic similarity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro