Evaluating the phase dynamics of coupled oscillators via time-variant topological features
The characterization of phase dynamics in coupled oscillators offers insights into fundamental phenomena in complex systems. To describe the collective dynamics in the oscillatory system, order parameters are often used but are insufficient for identifying more specific behaviors. We therefore propose a topological approach that constructs quantitative features describing the phase evolution of oscillators. Here, the phase data are mapped into a high-dimensional space at each time point, and topological features describing the shape of the data are subsequently extracted from the mapped points. We extend these features to time-variant topological features by considering the evolution time, which serves as an additional dimension in the topological-feature space. The resulting time-variant features provide crucial insights into the time evolution of phase dynamics. We combine these features with the machine learning kernel method to characterize the multicluster synchronized dynamics at a very early stage of the evolution. Furthermore, we demonstrate the usefulness of our method for qualitatively explaining chimera states, which are states of stably coexisting coherent and incoherent groups in systems of identical phase oscillators. The experimental results show that our method is generally better than those using order parameters, especially if only data on the early-stage dynamics are available.
READ FULL TEXT