Evaluating Large Language Models with NeuBAROCO: Syllogistic Reasoning Ability and Human-like Biases

06/21/2023
by   Risako Ando, et al.
0

This paper investigates whether current large language models exhibit biases in logical reasoning, similar to humans. Specifically, we focus on syllogistic reasoning, a well-studied form of inference in the cognitive science of human deduction. To facilitate our analysis, we introduce a dataset called NeuBAROCO, originally designed for psychological experiments that assess human logical abilities in syllogistic reasoning. The dataset consists of syllogistic inferences in both English and Japanese. We examine three types of biases observed in human syllogistic reasoning: belief biases, conversion errors, and atmosphere effects. Our findings demonstrate that current large language models struggle more with problems involving these three types of biases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset