Evaluating Interactive Summarization: an Expansion-Based Framework

09/17/2020 ∙ by Ori Shapira, et al. ∙ 0

Allowing users to interact with multi-document summarizers is a promising direction towards improving and customizing summary results. Different ideas for interactive summarization have been proposed in previous work but these solutions are highly divergent and incomparable. In this paper, we develop an end-to-end evaluation framework for expansion-based interactive summarization, which considers the accumulating information along an interactive session. Our framework includes a procedure of collecting real user sessions and evaluation measures relying on standards, but adapted to reflect interaction. All of our solutions are intended to be released publicly as a benchmark, allowing comparison of future developments in interactive summarization. We demonstrate the use of our framework by evaluating and comparing baseline implementations that we developed for this purpose, which will serve as part of our benchmark. Our extensive experimentation and analysis of these systems motivate our design choices and support the viability of our framework.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 5

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.