Estimation of the Spatial Weighting Matrix for Spatiotemporal Data under the Presence of Structural Breaks

10/16/2018
by   Philipp Otto, et al.
0

In this paper, we propose a two-step lasso estimation approach to estimate the full spatial weights matrix of spatiotemporal autoregressive models. In addition, we allow for an unknown number of structural breaks in the local means of each spatial locations. The proposed approach jointly estimates the spatial dependence, all structural breaks, and the local mean levels. In addition, it is easy to compute the suggested estimators, because of a convex objective function resulting from a slight simplification. Via simulation studies, we show the finite-sample performance of the estimators and provide a practical guidance, when the approach could be applied. Eventually, the invented method is illustrated by an empirical example of regional monthly real-estate prices in Berlin from 1995 to 2014. The spatial units are defined by the respective ZIP codes. In particular, we can estimate local mean levels and quantify the deviation of the observed prices from these levels due to spatial spill over effects.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset