Estimation of the parameters of an infectious disease model using neural networks

03/06/2015
by   V. Sree Hari Rao, et al.
0

In this paper, we propose a realistic mathematical model taking into account the mutual interference among the interacting populations. This model attempts to describe the control (vaccination) function as a function of the number of infective individuals, which is an improvement over the existing susceptible infective epidemic models. Regarding the growth of the epidemic as a nonlinear phenomenon we have developed a neural network architecture to estimate the vital parameters associated with this model. This architecture is based on a recently developed new class of neural networks known as co-operative and supportive neural networks. The application of this architecture to the present study involves preprocessing of the input data, and this renders an efficient estimation of the rate of spread of the epidemic. It is observed that the proposed new neural network outperforms a simple feed-forward neural network and polynomial regression.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro