Estimation of Microphone Clusters in Acoustic Sensor Networks using Unsupervised Federated Learning

02/05/2021
by   Alexandru Nelus, et al.
0

In this paper we present a privacy-aware method for estimating source-dominated microphone clusters in the context of acoustic sensor networks (ASNs). The approach is based on clustered federated learning which we adapt to unsupervised scenarios by employing a light-weight autoencoder model. The model is further optimized for training on very scarce data. In order to best harness the benefits of clustered microphone nodes in ASN applications, a method for the computation of cluster membership values is introduced. We validate the performance of the proposed approach using clustering-based measures and a network-wide classification task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset