Estimation-Based Model Predictive Control for Automatic Crosswind Stabilization of Hybrid Aerial Vehicles

09/28/2018
by   Mohamed K. Helwa, et al.
0

In this paper, we study the control design of an automatic crosswind stabilization system for a novel, buoyantly-assisted aerial transportation vehicle. This vehicle has several advantages over other aircraft including the ability to take-off and land in very short distances and without the need for roads or runways. Despite these advantages, the large surface area of the vehicle's wing makes it more susceptible to wind, which introduces undesirable roll angle motions. The role of the automatic crosswind stabilization system is to detect the roll angle deviation, and then use motors at the wingtips to counteract the wind effect. However, due to the relatively large inertia of the wing compared to small-size unmanned aerial vehicles and additional input time delays, an automatic crosswind stabilization system based on traditional control algorithms such as the proportional-integral-derivative (PID) controller results in a response time that is too slow. Another challenge is the lack of high-accuracy wind sensors that can be mounted on the vehicle's wing. Therefore, we first design a wind torque estimator that relies on inertial measurements, and then use feed-forward compensation to directly correct for the wind torque, resulting in a significantly faster response. We second combine the proposed estimator with a model predictive controller (MPC), and compare constrained MPC with unconstrained MPC for the considered application. Experimental results show that our proposed estimation-based MPC strategy reduces the response time of the system by around 80-90 standard PID controller, without the need for adding wind sensors or changing the hardware of the stabilization system.

READ FULL TEXT
research
12/20/2018

Modeling and Robust Attitude Controller Design for a Small Size Helicopter

This paper addresses the design and application controller for a small-s...
research
08/08/2019

Disturbance Estimation and Rejection for High-Precision Multirotor Position Control

Many multirotor Unmanned Aerial Systems applications have a critical nee...
research
10/12/2022

FlowDrone: Wind Estimation and Gust Rejection on UAVs Using Fast-Response Hot-Wire Flow Sensors

Unmanned aerial vehicles (UAVs) are finding use in applications that pla...
research
09/26/2022

Perception-driven Formation Control of Airships

For tracking and motion capture (MoCap) of animals in their natural habi...
research
03/23/2021

Model Based Control of Commercial-Off-TheShelf (COTS) Unmanned Rotorcraft for BrickWall Construction

This work proposes a systematic framework for modelling and controller d...
research
12/23/2022

A Manipulator-Assisted Multiple UAV Landing System for USV Subject to Disturbance

Marine waves significantly disturb the unmanned surface vehicle (USV) mo...
research
02/20/2020

Estimation-aware model predictive path-following control for a general 2-trailer with a car-like tractor

The design of the path-following controller is crucial to enable reliabl...

Please sign up or login with your details

Forgot password? Click here to reset