Estimating the Rating of Reviewers Based on the Text

05/22/2018
by   Mohammadamir Kavousi, et al.
0

User-generated texts such as reviews and social media are valuable sources of information. Online reviews are important assets for users to buy a product, see a movie, or make a decision. Therefore, rating of a review is one of the reliable factors for all users to read and trust the reviews. This paper analyzes the texts of the reviews to evaluate and predict the ratings. Moreover, we study the effect of lexical features generated from text as well as sentimental words on the accuracy of rating prediction. Our analysis show that words with high information gain score are more efficient compared to words with high TF-IDF value. In addition, we explore the best number of features for predicting the ratings of the reviews.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset