DeepAI AI Chat
Log In Sign Up

Estimating the Probability of Meeting a Deadline in Hierarchical Plans

by   Liat Cohen, et al.
Ben-Gurion University of the Negev

Given a hierarchical plan (or schedule) with uncertain task times, we propose a deterministic polynomial (time and memory) algorithm for estimating the probability that its meets a deadline, or, alternately, that its makespan is less than a given duration. Approximation is needed as it is known that this problem is NP-hard even for sequential plans (just, a sum of random variables). In addition, we show two new complexity results: (1) Counting the number of events that do not cross deadline is #P-hard; (2) Computing the expected makespan of a hierarchical plan is NP-hard. For the proposed approximation algorithm, we establish formal approximation bounds and show that the time and memory complexities grow polynomially with the required accuracy, the number of nodes in the plan, and with the size of the support of the random variables that represent the durations of the primitive tasks. We examine these approximation bounds empirically and demonstrate, using task networks taken from the literature, how our scheme outperforms sampling techniques and exact computation in terms of accuracy and run-time. As the empirical data shows much better error bounds than guaranteed, we also suggest a method for tightening the bounds in some cases.


page 1

page 2

page 3

page 4


A Tight (3/2+ε)-Approximation for Unsplittable Capacitated Vehicle Routing on Trees

We give a polynomial time (3/2+ϵ)-approximation algorithm for the unspli...

String factorisations with maximum or minimum dimension

In this paper we consider two problems concerning string factorisation. ...

Definable Inapproximability: New Challenges for Duplicator

We consider the hardness of approximation of optimization problems from ...

Efficient One Sided Kolmogorov Approximation

We present an efficient algorithm that, given a discrete random variable...

Computational Aspects of Reordering Plans

This article studies the problem of modifying the action ordering of a p...

Roos' Matrix Permanent Approximation Bounds for Data Association Probabilities

Matrix permanent plays a key role in data association probability calcul...