Estimating seal pup production in the Greenland Sea using Bayesian hierarchical modeling
The Greenland Sea is an important breeding ground for harp and hooded seals. Estimates of the annual seal pup production are critical factors in the abundance estimation needed for management of the species. These estimates are usually based on counts from aerial photographic surveys. However, only a minor part of the whelping region can be photographed, due to its large extent. To estimate the total seal pup production, we propose a Bayesian hierarchical modeling approach motivated by viewing the seal pup appearances as a realization of a log-Gaussian Cox process using covariate information from satellite imagery as a proxy for ice thickness. For inference, we utilize the spatial partial differential equation (SPDE) module of the integrated nested Laplace approximation (INLA) framework. In a case study using survey data from 2012, we compare our results with existing methodology in a comprehensive cross-validation study. The results of the cross validation study indicate that our method improves local estimation performance, and that the increased prediction uncertainty of our method is required to obtain calibrated count predictions. This suggests that the sampling density of the survey design may not be sufficient to obtain reliable estimates of the seal pup production.
READ FULL TEXT